
Jacob Beningo

3 Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

Chapter 1

Concepts for Developing Portable

Firmware

“A good scientist is a person with original ideas. A good engineer is a per-

son who makes a design that works with as few original ideas as possible. “

– Freeman Dyson

Why Code Reuse Matters

Over the past several decades, embedded systems have steadily in-

creased in complexity. The internet’s birth has only accelerated the process

as our society has been in a race to connect nearly every device imaginable.

Systems that were once simple and stand-alone must now connect through

the internet in a secure and fail-safe manner in order to stream critical in-

formation up into the cloud. Complexity and features are increasing at an

exponential rate with each device generation forcing engineers to reevalu-

ate how to successfully develop embedded software within the allotted

timeframe and budget.

 The increased demand for product features along with the need to

connect systems to the internet has dramatically increased the amount of

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

software that needs to be developed to launch a product. While software

complexity and features have been increasing, the time available to devel-

op a product has for the most part remained constant with a negligible

increase in development time (2 weeks in 5 years) as can be seen in Figure

1. In order to meet project timelines, developers are forced to either pur-

chase commercial off-the-shelf (COTS) software that can decrease their

development time or they need to reuse as much code as possible from

previous projects.

Firmware for microcontrollers has conventionally been developed

for a specific application using functional design methodologies (if any

methodology has been used at all) that typically tie the low level hardware

directly into the application code, making the software difficult if not im-

possible to reuse and port on the same hardware architectures let alone

reuse on a different architecture. The primary driving factor behind devel-

oping throw-away firmware has been the resource constrained nature

many embedded products exhibit. Microcontrollers with RAM greater than

a few kilobytes and flash sizes greater than 16 kB were once expensive and

could not be designed into a product without destroying any hope for mak-

ing a profit. Embedded software developers did not have large memories

or powerful processors to work with which prevented modern software

design techniques from being used in application development.

Modern microcontrollers are beginning to change the game. A typi-

cal low end ARM Cortex-M microcontroller now costs just a few U.S. dollars

and offers at a minimum 16 kB of RAM and 64 kB of flash. The dramatic

cost decreases in memory, larger memory availability and more efficient

CPU architectures is removing the resource constrained nature that firm-

ware developers have been stuck with. The result is developers can now

start utilizing design methods that decouple the application code from the

hardware and allow a radical increase in code reuse.

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

Figure 1 – Average Firmware Project Development Time (in months)1

Portable Firmware

Firmware developed today is written in a rather archaic manner.

Each product development cycle results in limited to no code reuse with

reinvention being a major theme amongst development teams. A simple

example is when development teams refuse to use an available real-time

operating system (RTOS) and instead, develop their own in-house sched-

uler. Beyond wanting to build their own custom scheduler, there are two

primary examples that demonstrate the issue with reinvention.

First, nearly every development team writes their own drivers due

to the fact that microcontroller vendors provide only example code and not

production ready drivers. Examples provide a great jump-start to under-

standing the microcontroller peripherals but still requires a significant time

investment to get a production intent system. There could be a hundred

companies using the exact same microcontroller and each and every one

will waste as much as thirty percent or more development time getting

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

their microcontroller drivers written and integrated with their middleware!

I have seen this happen repeatedly amongst my client base and heard nu-

merous corroborating stories from the hundreds of engineers I interact

with on a yearly basis.

Second, there are so many features that need to be packed into a

product and with a typical design cycle being twelve months1, developers

don’t take the time to properly architect their systems for reuse. High level

application code becomes tightly coupled to low level microcontroller code

which makes separating, reusing or porting the application code costly,

time consuming and buggy. The end result, developers just start from

scratch every time.

In order to keep up with the rapid development pace in today’s de-

sign cycles, developers need to be highly skilled in developing portable

firmware. Portable firmware is embedded software that is designed to run

on more than one microcontroller or processor architecture with little to

no modification. Writing firmware that can be ported from one microcon-

troller architecture to the next has many direct advantages such as:

 Decreasing time-to-market by not having to reinvent the wheel

(which can be time consuming)

 Decreasing project costs by leveraging existing components and

libraries

 Improved product quality through using proven and continuous-

ly tested software

Portable firmware also has a number of indirect advantages that many

teams overlook but can far outweigh the direct benefits such as:

Software Terminology

Portable firmware is embedded software that is designed to run on

more than one microcontroller or processor architecture with little or

no modification.

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

 More time in the development cycle to focus on product innova-

tion and differentiation

 Decreased team stress levels due to limiting how much total

code needs to be developed (Happy, relaxed engineers are more

innovative and efficient)

 Organized and well documented code that can make porting

and maintenance easier and more cost effective

Using portable and reusable code can result in some very fast and amazing

results as seen in the case study, “Firmware Development for a Smart Solar

Panel”, but there are also a few disadvantages. The disadvantages are re-

lated to upfront time and effort such as:

 The software architecture needing to be well thought through

 Understanding potential architectural differences between mi-

crocontrollers

 Developing regression tests to ensure porting is successful

 Selecting real-time languages and understanding their interop-

erability or lack thereof

 Experienced and high-skilled engineers being available to devel-

op a portable and scalable architecture

For development teams to successfully enjoy the benefits of porta-

ble code use, extra time and money needs to be spent up front. However,

after the initial investment, development cycles have a jump start to poten-

tially decrease development time by months versus the traditional

embedded software design cycle. The long term benefits and cost savings

usually overshadow the upfront design costs along with the potential to

speed up the development schedule.

Developing firmware with the intent to reuse also means that devel-

opers may be stuck with a single programming language. How does one

choose a language for software that may stick around for a decade or long-

er? Using a single programming language is not a major concern in

embedded software development as one might initially think. The most

popular embedded language, ANSI-C, was developed in 1972 and has prov-

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

en to be nearly impossible to usurp. Figure 2 shows the popularity of pro-

gramming languages, for all uses and applications, dating back to 2002.

Despite advances in computer science and the development of object ori-

ented programming languages, C has remained very popular as a general

language and is heavily entrenched in embedded software.

Figure 2 – TIOBE Computer Programming Index2

 The C programming languages’ popularity and steady use for dec-

ades doesn’t appear to be changing anytime soon. When and if the Internet

of Things (IoT) begins to gain momentum, C may even begin to grow in its

use and popularity as millions of devices are developed and deployed using

it. Developing portable and reusable software becomes a viable option

when one considers the steady and near constant use that the C language

has enjoyed in industry for developing embedded systems. When a devel-

opment team considers the timelines, feature needs and limited budgets

for the product development cycle, developing portable code should be

considered a mandatory requirement.

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

Case Study – Firmware for a Smart Solar Panel

When it comes to product development, the single constant in the

universe is that the development either needs to be done yesterday or by

some not so distant future date. A few years ago on December 1st, I

received a call from a prospective client I had been talking with for a

better part of the year. The client, a start-up in the small satellite indus-

try, had just received news that they had an opportunity to fly their new

flagship spacecraft on an upcoming launch. The problem was that they

had just six weeks to finish building, testing and then deliver their satel-

lite!

One of the many hurdles they faced was that their smart solar pan-

els, smart because they contained a plethora of sensors critical to

stabilizing the spacecraft, didn't have a single line of firmware written.

The solar panels firmware had to be completed by January 1st, leaving

just four weeks over a holiday month to design, implement, test and

deploy the firmware.

To give some quantification to the project scope, the following are

some of the software components that needed to be included:

 GPIO, SPI, I2C, PWM, UART, Flash, ADC

 Timer and system tick

 H-bridge control

 Task scheduler

 Accelerometer

 Magnetometer

 Sun sensor

 Calibration algorithms

 Fault recovery

 Health and wellness monitoring

 Flight computer communication protocol

An experienced developer knows the above list would be impossi-

ble to successfully complete in four weeks from scratch. I2C alone

could take two weeks to develop and the realistic delivery date for the

project would be 3-4 months not weeks.

I accepted the project and leveraged the very same HAL and driver

techniques presented in this book to complete the project. A day was

spent pulling in existing drivers and making minor modifications for

the microcontroller derivative. The second week was pulling together

the application code and remaining drivers. Finally, week three was

test, debug and delivery. Just in time for Christmas and to the clients’

delight.

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

 The decision to develop portable firmware should not be taken

lightly. In order to develop truly portable and reusable firmware, there are

a few characteristics that a developer should review and make sure that

the firmware will exhibit. First, the software needs to be modular. Writing

an application that exists in a single source file is not an option (yes I still

see this done even in 2016). The software needs to be broken up into man-

ageable pieces with minimal dependencies between modules and similar

functions being grouped together.

Portable software should follow the ANSI-C programming language

standard. Developers should avoid using compiler intrinsic and C exten-

sions because they are compiler specific and will not easily port between

tool chains. In addition to avoiding these add-ons, developers should select

a safe and fully specified subset for the C programming language. Industry

accepted standards such as MISRA-C or Secure C might be good options to

help ensure that the firmware will use safe constructs.

Developers will want to make sure that the reusable code is also

well documented and contain examples. The firmware needs to have a

clean interface that is simple and easy to understand. Most importantly,

10 Qualities of Portable Firmware

Portable Firmware ….

1) is modular

2) is loosely coupled

3) has high cohesion

4) is ANSI-C compliant

5) has a clean interface

6) has a Hardware Abstraction Layer (HAL)

7) is readable and maintainable

8) is simple

9) uses encapsulation and abstract data types

10) is well documented

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

developers will want to make sure that a simple, scalable hardware ab-

straction layer is included in the software architecture. The hardware

abstraction layer will define how application code interacts with the lower,

underlying hardware. Let’s examine a few key characteristics that portable

firmware should exhibit in greater detail before diving into hardware ab-

straction layers.

Modularity

On more than one occasion over the last seversal years I have

worked with a client whose entire application, fifty thousand plus lines of

code, was contained within a single main.c module. Attempts to maintain

the software or reuse pieces of code quickly turned into a nightmare. These

applications were still using software techniques from back in the 70’s and

80’s which was not working out so well for my client.

Modularity emphasizes that a programs functionality be separated

into independent modules that may be interchangeable. Each module con-

tains a header and source file with the ability to execute specialized system

functions that are exposed through the modules interface. The primary

benefit for employing modularity in an embedded system is that program is

broken up into smaller pieces which are organized together based on pur-

pose and function.

Ignoring the facts above and lumping large amounts of code into a

single module, even if it is well organized or makes sense in the beginning,

usually results in a decay into a chaos and a software architecture that re-

sembles spaghetti. Breaking a program up into separate modules is so

important when developing portable and reusable firmware because the

independence each module exhibits allows it to be easily moved from one

application to the next or in some cases even one platform to the next.

There are a few advantages associated with breaking a program up into

modular pieces such as:

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

 Being able to find functions or code of interest very quickly and

easily

 Improved software understanding through the modules organi-

zation

 The ability to copy modules and use them in new applications

 The ability to remove modules from a program and replace

them with new functionality

 Easing requirements traceability

 Developing automated regression testing for individual modules

and features

 Overall decreased time to market and development costs

Each module added to a program does come with the disadvantage

that the compiler will need to open, process, compile and close the mod-

ule. The result in the “old days” would have been slower compilation times.

Development machines today are so fast and efficient that increased com-

pile time is no longer an excuse for writing bulking, clunky code.

Module Coupling and Cohesion

Breaking a program up into smaller, more manageable pieces is a

good step forward towards developing portable firmware but it is only the

first step. In order for a module to be truly portable, it must exhibit low

coupling to other modules within the code base and a high level of cohe-

sion. Coupling refers to how closely related different modules or classes are

to each other and the degree to which they are interdependent. The higher

the coupling, the less independent the module is.

Portable software should minimize the coupling between modules

in order to make it easier to use in more than one development environ-

ment. Take for example the file dependency chart in Figure 3a. Attempting

to bring the top level module into the code base will be a small nightmare

or like peeling an onion. The top module will be brought in, only for the de-

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

veloper to realize that it is dependent upon another, which is dependent

upon another and another and so on. In short order, the developer might

as well have just brought in the entire application or simply started from

scratch. Attempting to use modules that are tightly coupled is very frustrat-

ing and can cause the code size to balloon out of control if care is not

taken.

(a) (b)

Figure 3 – Module Coupling

The software base in Figure 3b shows a completely different story.

The modules in Figure 3b are loosely coupled. A developer attempting to

bring in a top level module won’t be fraught with continuous compiler er-

rors of missing files and spend hours on end trying to track down all the

dependencies. Instead, the developer quickly moves the loosely coupled

module into the new code base and is on to the next task with little to no

frustration. Low coupling is the result from a well thought out, and well-

structured software design.

Software Terminology

Coupling refers to how closely related different modules or classes are

to each other and the degree to which they are interdependent.

Cohesion refers to the degree in which module elements belong to-

gether.

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

 Module coupling is only the stories first part. Having low module

coupling doesn’t guarantee that the software will exhibit easily portable

traits. The desire is to have a module that has low coupling and high cohe-

sion. Cohesion refers to the degree in which the module elements belong

together. In a microcontroller environment, a low cohesion example would

be lumping every microcontroller peripheral function into a single module.

The module would be large and unwieldy. The microcontroller peripheral

functions could instead be broken up into separate modules each with

functions specific to one peripheral. The results would be benefits listed in

the last section on modularity.

 Portable and reusable software attempts to create modules that are

loosely coupled and have high cohesion. Modules with these characteristics

are usually easy to reuse and maintain. Consider what would happen in a

tightly coupled system if a single module is changed. A single change would

result in forcing changes in at least one other module if not more and could

be time consuming to hunt down all the necessary changes. Failure to

make the change or a simple oversight could result in a bug which in the

worst case could cause projects delays and increased costs.

Following A Standard

Creating firmware that is portable and reusable can be challenging.

For example, the C language has gone through a number of different

standard revisions; C90, C99 and C11. In addition to the different C ver-

sions, there also exists non-standard language extensions, compiler

additions and even language offshoots. In order to develop firmware that is

reusable to the greatest extent possible, a development team needs to se-

lect a widely accepted standard version such as C90 or C99. The C99

version has some great additions that make it a good choice for developers.

At the time of this writing there is limited support for C11 in firmware de-

velopment and C11 is five years old! Adopting C99 is the best bet for

following a standard.

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

The long term support for C and its general purpose use has result-

ed in language extensions and non-standard versions that need to be

avoided. Using any construct that is not in the standard will result in spe-

cialized modifications to the code base that can obfuscate the code.

Sometimes using extensions or an intrinsic is unavoidable due to optimiza-

tion needs but we will discuss later how we can still write portable code in

these circumstances.

 In addition to using the C standard, developers should also restrict

their use to well defined constructs that are easy to understand, maintain

and fully specified. For example, standards such as MISRA-C and Secure-C

exist to provide recommendations on a C subset that should be used to de-

velop firmware. MISRA-C was developed for the automotive industry but

the recommendations have proven to be so successful at producing quality

software that other industries are adopting the recommendations.

 Developers should not view a standard as a restriction but instead

as a method for improving the firmware quality and portability that they

develop. Identifying and following standard C dialects will take developers

a long way in developing reusable firmware. Recognizing the need to follow

the ANSI-C standard and having the discipline to follow it will take a devel-

opment team towards creating embedded software that can be reused for

years to come.

Portability Issues in C – Data Types

The most infamous and well known portability issues in the C pro-

gramming language is related to defining the most commonly used data

type, the integer. One needs only to ask a simple question to demonstrate

a potential portability issue; What will be the value LoopCount contains

when i rolls over to 0? The demonstration code that contains LoopCount

can be found in of the loop iteration counter LoopCount shown in Figure 4

be when i rolls over to 0?

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

Figure 4 – Integer Rollover Test

 The answer could be 32,676 or 2,147,483,647. Both answers could

be correct. The reason is that the storage size for an integer is not defined

within the ANSI-C standard. The compiler vendors have the choice to define

the storage size for the variable based on what they deem will be the most

efficient and/or appropriate.

 The storage size for an integer normally wouldn’t seem like a big

deal. For a code base an int will be an int so who cares? The problem sur-

faces when that same code is compiled using a different compiler. Will the

other compiler also store the variable as the same size or different? What

happens if it was stored as four bytes and now is only two? Perfectly work-

ing software is now buggy!

 The portability issues arising from integers, the most commonly

used data type, is solved in a relatively simplistic way. The library header

file stdint.h defines fixed width integers. A fixed width integer is a data type

that is based on the number of bits required to store the data. For example,

a variable that needs to store unsigned data that is 32 bits wide doesn’t

need to gamble on int being 32 bits but instead, a developer can simply use

the data type uint32_t. Fixed width integers exist for 8, 16, 32 and in some

cases even 64 bits. Table 1 shows a list of the different fixed width integer

definitions that can be found in stdint.h.

static int i = 0;

static LoopCount = 0;

for (i = 1; i != 0; i++)

{

 LoopCount = i;

}

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

Data Type Minimum Value Maximum Value

int8_t -128 127

uint8_t 0 255

int16_t -32,768 32,767

uint16_t 0 65335

int32_t -2,147,483,648 2,147,483,647

uint32_t 0 4,294,967,295

Table 1 – Fixed Width Integers3

 The library file stdint.h doesn’t just contain the data types found in

Table 1but also a few interesting and less known gems. Take for example

uint_fastN_t which defines a variable that is the fastest to process at least

N bits wide. A developer can tell the compiler that the data has to be at

least 16 bits but could be 32 bits if it can be processed faster using a larger

data type. Another great example is uintmax_t which defines the largest

fixed width integer possible on the system. A personal favorite is the

uintptr_t which defines a type that is wide enough to store the value of a

pointer.

 Using stdint.h is an easy way to help ensure that embedded soft-

ware integer types preserve their storage size no matter which compiler

the code may be compiled on. A simple and safe way to ensure that integer

data types are properly preserved.

Portability Issues in C – Structures and Unions

The C standards have some unfortunate ambiguities in the definition

of certain language constructs; take for example structures and unions. A

developer can declare a structure containing three members x, y and z as

shown in Figure 5. As one might expect, when a variable is declared of type

Axis_t, the data members will be created in the order x, y and z in memory;

however, the C standard does not specify how the data members will be

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

byte aligned. The compiler has the option to align the data members in any

way that it chooses. The result could be that x, y and z occupy contiguous

memory or there could be padding bytes added between the data mem-

bers that space the members by two, four, or some byte value that would

be completely unexpected by a programmer.

Figure 5 – Structure Definition

The unspecified structure and union behavior make it the develop-

ers job when porting the firmware to understand how the structure is

being defined in memory and whether or not the structure is being used in

such a way that adding padding bytes could affect the application behavior

or performance. The structure could include padding bytes or even holes

depending on the data type being defined and how the compiler vendor

decided to handle the byte alignment.

Portability Issues in C – Bit Fields

The situation with structures get even worse when it comes to the

definition of bit fields. Bit fields are declared within a structure and are

meant to allow a developer to save memory space by tightly packing data

members that don’t occupy an entire data space. An example of using bit

fields is to declare a flag within a structure that have a true or false value as

can be seen in Error! Reference source not found..

typedef struct

{

 uint8_t x;

 uint8_t y;

 uint8_t z;

}Axis_t;

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

Figure 6 – Bit Field Definition

The problem with bit fields is that the implementation is completely

undefined by the standard. The compiler implementers get to decide how

the bit field will be stored in memory including byte alignment and whether

or not the bit field is allowed to cross a memory boundary. Another prob-

lem with a bit field is that while they may appear to save memory, the

resulting code to access the bit field may be large and slow which can affect

the real-time performance for accessing them. The general recommenda-

tion when it comes to bit fields is that they are non-portable and compiler

dependent and should be avoided for use in firmware that is meant to be

reusable and portable.

Portability Issues in C – Preprocessor Directives

All preprocessor directives are not created equal. A developer will have

different preprocessor directives available depending on whether GNU C,

IAR Embedded Workbench, Keil uVision or any other compiler is used.

ANSI-C has a limited number of preprocessor directives that are included in

the standard and can be considered portable.

Compiler vendors have the ability to add preprocessor directives that

are not part of the standard. For example, #warning is a commonly used

typedef struct

{

 uint8_t x;

 uint8_t y;

 uint8_t z;

 uint8_t x_flag:1;

 uint8_t y_flag:1;

 uint8_t z_flag:1;

}Axis_t;

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

preprocessor directive that is not supported by C90 or C99! The #error pre-

processor directive is part of the standard and #warning was added by

compiler vendors in order to allow a developer to raise a compilation warn-

ing. Developers who rely heavily on #warning may port code to a compiler

that doesn’t recognize #warning as a valid preprocessor directive or may

recognize it as having a different purpose!

A developer interested in writing portable code needs to be careful

which preprocessor directives are used within the embedded software. The

most obvious non-portable preprocessor directive is #pragma which can

generally be considered to declare implementation-defined behaviors with-

in an application. Using #pragma should be avoided as much as possible

within an application that is expected to be ported to other tool chains.

Using #pragma or other specialized preprocessor directives and at-

tributes cannot always be avoided without dramatically increasing code

complexity and structure. One example where #pragma may be necessary

is to specify an optimization that should be performed on an area of code.

A developer in a similar situation can use compiler predefined macros and

conditional compilation to ensure that the code is optimized and that if it is

ever ported to another compiler an error is raised at compile time. Each

compiler has its own set of predefined macros including a macro that can

be used to identify the compiler that is in use. Figure 7 shows an example

of a compiler defined macro that may be of interest to a developer.

Figure 7 – Compiler Defined Macros

__CC_ARM__

__ICARM__

__GNUC__

__STDC__

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

 The predefined macros from Figure 7 that identify the compiler can

be used as part of a preprocessor directive to conditionally compile code.

Each compiler that may be used can then be added to the conditional

statement with the non-portable preprocessor directive that is needed for

the task at hand. Figure 8 shows how a developer might take advantage of

the predefined compiler macros to conditionally compile a fictitious

#pragma statement into a code base.

Figure 8 – Using Conditional Compilation for Non-Portable Constructs

 Developers interested in writing portable, ANSI-C code should

consult the ANSI-C standard, such as C90, C99 or C11, and check the ap-

pendices for implementation defined behaviors. A developer may also

want to consult their compiler manuals to determine the extensions and

attributes that are available to developers.

Embedded Software Architecture

Firmware development in the early days used truly resource con-

strained microcontrollers. Every single bit had to be squeezed from both

code and data memory spaces. Software reusability was a minor concern

and programs were monolithically developed. The programs would be one

giant fifty-thousand-line program all contained within a single module with

little to no thought given to architectural design or reuse. The only goal was

to make the software work. Thankfully, times have changed and while

many microcontroller applications remain “resource constrained”, compiler

#if defined (__ICARM__)

 #pragma loop unroll 3

#elif defined (__GNUC__)

 #pragma unroll 3

#else

 #error Loop unroll optimization not defined!

#endif

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

capabilities and decreasing memory costs now allow for a software archi-

tecture that encourages reuse.

 Developing software that is complex, scalable, portable and reusa-

ble requires a software architecture. A software architecture is the

fundamental organization a system embodies in its components, their rela-

tionship to each other, to the environment and the principles guiding its

design and evolution4. In other words, a software architecture is the blue-

print from which a developer implements software. A software

architecture is literally analogous to the blueprint an architect would use to

design a building or a bridge.

 The software architecture provides a developer with each compo-

nent and major software structure, supplies constraints on their

performance and identifies their dependences and interactions (the inputs

and outputs). For our purposes, we will only be looking at software archi-

tecture from the perspective of organizing firmware into separate software

layers that have contractually specified interfaces to improve portability

and code reuse. Each software has a specific function such as directly con-

trolling the microcontroller hardware, running middleware or containing

the systems application code. Properly architected software can provide

developers with many advantages.

 First, a layered architecture can provide a functional boundary be-

tween different components within the software. Take for example low

level driver code that makes the microcontroller work. Including driver

code directly within the application code tightly couples the microcontrol-

ler to the application code. Since application code normally contains

algorithms that may be used across multiple products, mixing in low level

microcontroller code will make it difficult and time consuming to reuse the

code. Instead, a developer who architects layered software can separate

the application and low level code, allowing both layers to be reused in

other applications or on different hardware.

 Second, a layered architecture hints at the locations where inter-

faces within the software need to be created. In order for a development

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

team to create firmware that can be reused, there needs to be an identifi-

able boundary where an interface can be created that remains consistent

and unchanging as time passes. The interface contains declarations and

function prototypes for controlling software in lower layers.

 Third, a layered architecture allows information within the applica-

tion to be hidden from other areas that may not need access to it. Consider

the example with the low level driver. Does the application code really

need to know the implementation details for how the driver works? Surely

someone working at the application level would rather have a simple func-

tion to call and the desired result happens behind the scenes. This is the

idea behind abstractions which is hiding the implementation behavior from

the programmer and simply provides them with a black box. Developing a

simple software architecture can help developers take advantage of these

benefits.

 Developers looking to create portable firmware that follows a lay-

ered software architecture model have many different possible models

that can be chosen from and many custom hybrid models that they could

undoubtedly develop. The simplest layered architecture can be seen in

Figure 9 which consists a driver and application layer operating on the

hardware. The driver layer contains all the code necessary to get the mi-

crocontroller and any other associated board hardware such as sensors,

buttons and so forth running. The application code contains no driver code

but has access to the low level hardware through a driver layer interface

that hides the hardware details from the application developer but still al-

lows them to perform useful functions.

Figure 9 – Two-layer Embedded Software Architecture

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

 The next model that a developer could choose to implement breaks

the software up into three-layers similar to Figure 10. In a three-layer

model, the driver and application layers still exist but a third “middle” layer

has been added. The middleware layer may contain software such as a real-

time operating system (RTOS), USB and/or Ethernet stacks along with file

systems. The middleware layer contains software that isn’t directly the end

application code but also does not drive the low level hardware. For this

reason, components in this layer are often referred to as middleware.

Beyond the three-layer model, developers may find it worthwhile to

start breaking the software into more refined layers of operation and may-

be even provide pathways for higher level layers to circumvent layers and

get direct access into lower software layers. The architectures can become

quite complex and is well beyond the scope for this book. For now, a four-

layer model will be as complex an example we will examine. For example, a

developer may decide that the board support package, the integrated

Figure 10 – Three-layer Embedded Software Architecture

circuits outside of the microcontroller, should be separated from the mi-

crocontroller driver layer. The board support drivers are usually dependent

on the microcontroller drivers anyway and in order to improve portability

probably should be separated. Doing this results in one possible four-layer

model similar to the one shown in Figure 11.

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

Figure 11 – Four-layer Embedded Software Architecture

Many formal models exist for developing layered software architec-

tures including the well-known OSI model which contains over seven layers.

A developer should examine their requirements, their portability and reuse

needs and pick the simplest architecture that can meet their requirements.

Don’t be tempted to build a thirty layered software architecture if three

layers will meet the requirements! The goal is to avoid complex spaghetti

code that is intertwined and entangled and instead, develop layered lasa-

gna code! (Just the thought makes my stomach growl)!

Hardware Abstraction Layers (HAL)

Each software layer software has at least one interface to an adjoin-

ing software layer. Depending on the software type that is contained within

the next layer determines the name given to the interface. Each layer, if

developed properly, can appear as a black box to the developer and only

the interface specification provides insight into how to get the needed be-

havior and result. The interface has many benefits such as

 Providing a consistent method for accessing features

 Abstracting out the details for how the underlying code works

 Specifying wrapper interfaces for how to merge inconsistent

code to the software layer

The most interesting firmware layer that developers now have the

ability to utilize is the Hardware Abstraction Layer. A Hardware Abstraction

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

Layer, HAL, is an interface that provides the application developer with a

standard function set that can be used to access hardware functions with-

out a detailed understanding for how the hardware works. Despite being

commonly referred to as a HAL, it is not the infamous artificial intelligence

from 2001 A Space Odyssey, although sometimes they can be just as devi-

ous.

HAL’s are essentially API’s designed to interact with hardware and a

properly designed HAL provides developers with many benefits such as

software that is

Software Terminology

Driver Layer refers to the software layer that contains low level,

microcontroller specific software. The driver layer forms the ba-

sis from which higher level software interacts and controls the

microcontroller.

Board Support Package refers to driver code that is dependent

upon lower level microcontroller driver code. These drivers usu-

ally support external integrated circuits such as EEPROM or flash

chips.

Middleware refers to the software layer that contains software

dependent upon the lower lying hardware drivers but does not

directly contain application code. Application code is usually de-

pendent upon the software contained within this middle layer of

software.

Application Layer refers to a software layer used for system and

application specific purposes that is decoupled from the underly-

ing hardware. The application code meets product specific

features and requirements.

Configuration Layer refers to a software layer used to configure

components within the layer.

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

 Portable

 Reusable

 Lower cost (result of reuse)

 Abstracted (I don’t need to know how the microcontroller does

what it does)

 Fewer bugs due to repeated use

 Scalability (moving to other MCU’s within a part family)

A poorly designed HAL can result in increased costs, buggy software

and leave the developer wishing that they were dealing with the previously

mentioned infamous HAL. An example software architecture that utilizing a

HAL might look something similar to Figure 12. We will be discussing HAL

design through-out the book.

Figure 12- Software Architecture with a HAL

Software Terminology

Hardware Abstraction Layer (HAL) refers to a firmware layer that

replaces hardware level accesses with higher level function calls.

Application Programming Interface refers functions, routines and

libraries that are used to accelerate application software development.

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

Application Programming Interfaces (APIs)

Application Programming Interfaces, often referred to as API’s, are

a set of functions, routines and libraries that are used to accelerate the ap-

plication software development. API’s are usually developed at the highest

software layers. There are many cases where developers will use the term

API to include the HAL since the HAL is really a specialized API designed to

interact with hardware. An example where the API might exist in a soft-

ware stack can be seen in Figure 13.

A specific application may have multiple middleware components

such as an RTOS, TCP/IP stack, file system and so forth. Each component

may have their very own API associated with their software package. There

could even be application level components that have their own API’s in

Figure 13 – Application Programming Interfaces

order to facilitate speedy development. The rule of thumb is that wherever

you see two software layers’ touch, there is an interface there which de-

fines an API or HAL.

Project Organization

Organizing a project can help improve portability and maintainabil-

ity. There are many ways that developers can organize their software but

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

the easiest way is to attempt to follow the software layer stack-up. Creat-

ing a file system and project folder structure that matches the layers makes

it easier to simply replace a folder (a layer) with new software which would

also include the components within that layer.

The project should also be organized in such a way within each layer

that modules, tasks and other relevant code are easily locatable. Some de-

velopers like to create folders for modules or components and keep all

configuration, header and source modules within the folders. Organizing

the software in this way makes it very easy to add and remove software

modules. Other developers prefer to break-up and keep header and source

file separate. The method used is not important so much as being con-

sistent and following a method is.

 The following is an example organization that a developer may de-

cide to implement to organize their project:

• Drivers

• Application

• Task Schedulers

• Protocol Stacks

• Configuration

• Supporting Files and docs

Getting Started Writing Portable Firmware

Developers who want to reuse software have a several challenges

to overcome in order to be successful. These include:

 Endianness

 Processor architecture

 Bus width

 Ambiguous standards

 Development time and budget

 Modularity

 Code coupling

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

just to name a few. Getting started can be overwhelming and lead to

more stress and confusion than simply writing very functional code that is

discarded later. The key to successfully developing portable code is to de-

termine how well your firmware currently meets the portable software

characteristics. Once we understand where we are, we can decide where

we want to go and set in motion the steps necessary to get there.

To determine where we are today with developing portable firm-

ware, start by drawing a diagram similar to that shown in Figure 14. In the

diagram, label each spoke with a portable firmware characteristic and se-

lect the top eight most important characteristics to you.

In each identified category, a developer can then evaluate how well

their code exhibits these properties. For example, a developer who has

been trying to transition into writing more portable code may evaluate

themselves with a diagram result similar to Figure 15.

 A quick look at Figure 15 can tell a developer a lot of information.

First, we have strengths in documentation and modularity. That’s a great

step towards developing portable firmware and we are just getting started.

The figure also shows us where our weaknesses are such as code coupling

and cohesion.

Figure 14 – Portable Code Evaluation

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

Figure 15 –Evaluated Firmware Characteristics

From this glance we can now determine where we should start to

focus our attention. Which characteristic if improved by just a couple

points will most drastically improve our code? Let’s choose code coupling

as example. If a developer is going to improve code coupling, they need to

determine how they are going to go about making that improvement. They

might decide that the best way to do this is to

• Schedule code reviews

• Find a tool that can provide a module dependency graph

• Use the dependency graph tool (just because we have a tool

doesn’t mean we have the discipline to use it)

• Develop a high level architecture that takes into account module

coupling

A developer may decide that improving in one area is good enough to

start or that all need to be done. The point is that we aren’t going to start

Developing Reusable Firmware

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

writing perfect, reusable code overnight. The process is iterative and may

take a few years before all the rough edges are smoothed but that is okay.

 Below is a simple process that developers can use to improve their

firmware portability:

1) Analyze their code characteristics

2) Identify strengths and weaknesses

3) Determine which characteristic to improve in the next 3 months

4) Identify what can be done to make the incremental improvement

5) Implement the improvement

6) After the specified period repeat

Going Further

Reading about portable and reusable code is one thing, actually doing

it is a completely different story. Below are some suggestions on steps you

can take to start developing firmware that is more portable:

 Select the language standard that will be used for your develop-

ment effort(s) and spend 30 minutes each day reading through the

language standard. Note areas that are not fully defined or could

become pain points.

 Select two or three compilers, such as GCC, Keil and IAR. Download

their user manuals and review their documentation on how they

implemented the ambiguous areas in the selected standard.

 Purchase a copy of MISRA C/C++ and become familiar with the rec-

ommended best practices.

 Develop your own coding standard on the constructs that are al-

lowed within an application and how compiler intrinsics and

extensions should be handled.

 Review your typical software architecture. Does it have well defined

layers? Does each layer have a well-defined interface? If not, now is

the perfect time to spend a few minutes architecting your firmware

stack-up. (Don’t be concerned with defining the interface just yet.

We’ll be covering how to do this in the coming chapters).

Jacob Beningo

Confidential – ©2016 Jacob Beningo, All Rights Reserved, DRAFT A08

 Review the last section on “How to get started Writing Portable

Firmware”. On a sheet of paper, draw your own spider diagram and

rank how well your code exhibits the portable firmware characteris-

tics. Select one or two characteristics that you feel will have the

biggest impact on your code and focus on improving those. Periodi-

cally review and reevaluate.

__

Chapter References

1 Embedded Marketing Study, 2009 – 2015, UBM
2 TIOBE Programming Community Index, November 2015, www.Tiobe.com
3 ISO/IEC 9899:1999, C Language Specification
4 ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architec-
ture
5 http://whatis.techtarget.com/definition/layering
6 http://whatis.techtarget.com/definition/interface

