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Secure Bootloader Design Techniques for 
MCU’s
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Session Overview

• Embedded System Security Attacks
• Secure Bootloader Features
• STM32 X-CUBE-SBSFU
• Secure Bootloader Implementation
• SBSFU Demonstration
• Best practices for secure bootloader design

Objective:

Topics:

• Explore and demonstrate secure bootloader design techniques
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Hands-on Example Materials

NUCLEO-L476RG



© 2017 Beningo Embedded Group, All Rights Reserved

A Simple IoT Device

Sensor MCU

Communications
Device

Communication Communication 
Device

Sensor

MCU
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Attack Categories

Logical attack
– Remote Exploit of software bugs and open 

ports

Board level attack
– Debug ports, physical access to I/F

– Side Channel attack (SPA/DPA, Profiling)

– Timing attack, faults injection

Chip level attack
– FIB (cutting and rewiring signals)

– Physical delayering, reverse-engineering

Today 
95 % 

attacks
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What features does a secure bootloader have?

Authenticity

Data Confidentiality

Firmware Integrity

Device Integrity Tamper Prevention

Code Integrity
Isolate Secure  and Non Secure Processes
Secure Communications

Protect Keys
Protect Intellectual Property
Protect Customer Data

Unique and Immutable Identity
Prevent Counterfeiting / cloning
Protect Certificates
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Secure Boot

• Secure Boot is about ensuring a Chain of Trust established and 
maintained throughout the runtime execution of code on the product.

• Secure Boot is used as a Root of Trust using cryptographic functions to 
confirm the authenticity and integrity of the user firmware before 
allowing it to run
– Unique Entry point at RESET (security infrastructure)
– Immutable code
– Authentication
– Integrity

reset

Authenticates

Code Cert.

User
Application

Boots Up
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Secure Firmware Update

Communication Communication 
Device

Sensor

MCU

Server

Firmware

Data File

OEM Key

Developer

Data File
Firmware

MCUServer

§ Server sends FW Package

§ Device receives, 
checks/stores/installs new FW 
package and executes it

Communication 

Data File

Firmware
Data File

Encrypted File
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X-CUBE-SBSFU in a Nutshell
• X-CUBE-SBSFU is provided as reference code to demonstrate state-of-the-art 

usage of the STM32 security protection mechanisms. It is a starting point for 
OEMs to develop their own Secure Boot and Secure Firmware Update 
applications as a function of their product security requirement levels.
– The SBSFU application is an example illustrating how this can be achieved
• This is only one item of the package

– Security never comes for free
• SBSFU is NOT an off-the-shelf secure bootloader with secure firmware 

update capability
• Customers to use it as an example to understand how to leverage the 

STM32 assets  
• Customers must analyze their system and build their own solution 

under their own responsibility
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X-CUBE-SBSFU Features Overview
• Secure Boot (Root of Trust):

– Activate and Check right secure mechanisms of STM32 platform to protect critical operation and 
secret from attacks

– Check Authentication and Integrity of User Application before execution
• New (Encrypted) Firmware download via USART Virtual com
• FW installation management:

– Detect new (Encrypted) Firmware version to install
– From local download service
– Pre-downloaded OTA via User Application from previous execution 

– Manage Firmware version (check unauthorized updates or unauthorized installation)
– Secure Firmware Update:

– Firmware Authentication and Integrity check
– Firmware Decryption
– Firmware Installation

– In case of any error occurring during new image installation rollback to the previous valid 
Firmware version

– Execute new installed Firmware (once Authenticated and Integrity checked)
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X-CUBE-SBSFU Features Overview

• 3 cryptographic schemes are provided

• The X-CUBE-SBSFU Architecture allows switching from one scheme to 
another via compiler switch.
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STM32 Security Features

STM32 
Series
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STM32 L4 80 M4
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Package Architecture Overview

Hardware Abstraction Layer  API 
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X-CUBE-SBSFU Ecosystem Overview

Secure OEM-FW image Update (SBSFU local download or User Application Download)

User Flash

OEM FW V2

OEM Firmware Authentification/Encryption keys

SFU keys
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Firmware Image Programming

Secure Engine

SBSFU

FW Header #A 

Active 
Firmware #A

Swap area

Slot #0

Slot #1

Secure Engine

SBSFU

FW Header #A 

Active 
Firmware #A

FW Header #B

Encrypted FW 
Image #B
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Secure Engine

SBSFU

FW Header #B 

Active 
Firmware #B

FW Header #A
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SBSFU
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Component Deployment Model
• UserApp: sample user application (mutable firmware: this is the updated FW)
• SECoreBin: the binary running in the secure enclave (isolated execution 

environment)
• SBSFU: the Secure Bootloader with Secure Firmware Update capability
• Secure Engine, SECoreBin and SBSFU are tightly coupled

SBSFU

SBSFU Core

Secure Engine

se_interface

Low level APIs

se_interface_xxx.oCompiled in the SBSFU project

SECoreBin SE_Core.bin

Low level components
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Component Deployment Model
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Security Layering
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Types of Protections
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Chain of Trust
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Protected Processing
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Secure Enclave: Secrets Storage
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Non protected areas ….

• The FLASH slots storing the User Firmware Images are not protected

– Only the Header of the Active Slot is protected by Firewall

• The Active Firmware Image can be altered: SBSFU does NOT prevent this

– After altering the Active Firmware Image you can install any valid FW 

version

– This is a way to re-install version N-1 despite the ‘anti-rollback’ check at 

installation stage

• The slot #1 can be altered too

– Denial of Service is possible (no rollback possible)

• A lot more things can probably be done

SBSFU is an example (the security grade is unknown)
SBSFU is for free (available on st.com)…security is not…
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The NUCLEO-L476RG
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DEMO Project Setup

Bootloader 
Demo
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Secure Bootloader Best Practices

• Start your secure bootloader design early!

• Remember that security isn’t free

• Select a microcontroller that supports security

• Lock the flash security bits to protect the bootloader and application

– Secure boot should be immutable

• Securely store private keys

• Clearly identify up-front the level of security that is necessary for the bootloader

• Develop a chain of trust

• Use signatures to authenticate the firmware source
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Going Further

• Download beningo.com resources
– C Doxygen templates
– RTOS Best Practice Guide
– Bootloader White Paper
– Bootloader Design Techniques Course

• STM Resources
– X-CUBE-SBSFU
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Questions


