
© 2018 Beningo Embedded Group , All Rights Reserved

Secure Bootloader Design Techniques for
MCU’s

© 2017 Beningo Embedded Group, All Rights Reserved 2

Session Overview

• Embedded System Security Attacks
• Secure Bootloader Features
• STM32 X-CUBE-SBSFU
• Secure Bootloader Implementation
• SBSFU Demonstration
• Best practices for secure bootloader design

Objective:

Topics:

• Explore and demonstrate secure bootloader design techniques

© 2017 Beningo Embedded Group, All Rights Reserved

The Lecturer

Jacob Beningo
Principal Consultant

: jacob@beningo.com
: 810-844-1522

: Jacob_Beningo

: Beningo Engineering

: JacobBeningo

: Embedded Basics

Newsletters

• Embedded Bytes

http://bit.ly/1BAHYXm

Consulting
• Secure Bootloaders

• Code Reviews
• Architecture Design
• Real-time Software
• Expert Firmware Analysis
• Microcontroller Systems

Embedded Training
• RTOS Workshop
• Bootloader Design
• Debugging Techniques
• Security Fundamentals
• Micro Python

Social Media / Contact

www.beningo.com

http://bit.ly/1BAHYXm

© 2017 Beningo Embedded Group, All Rights Reserved

Hands-on Example Materials

NUCLEO-L476RG

© 2017 Beningo Embedded Group, All Rights Reserved

A Simple IoT Device

Sensor MCU

Communications
Device

Communication Communication
Device

Sensor

MCU

© 2017 Beningo Embedded Group, All Rights Reserved

Attack Categories

Logical attack
– Remote Exploit of software bugs and open

ports

Board level attack
– Debug ports, physical access to I/F

– Side Channel attack (SPA/DPA, Profiling)

– Timing attack, faults injection

Chip level attack
– FIB (cutting and rewiring signals)

– Physical delayering, reverse-engineering

Today
95 %

attacks

© 2017 Beningo Embedded Group, All Rights Reserved

What features does a secure bootloader have?

Authenticity

Data Confidentiality

Firmware Integrity

Device Integrity Tamper Prevention

Code Integrity
Isolate Secure and Non Secure Processes
Secure Communications

Protect Keys
Protect Intellectual Property
Protect Customer Data

Unique and Immutable Identity
Prevent Counterfeiting / cloning
Protect Certificates

© 2017 Beningo Embedded Group, All Rights Reserved

Secure Boot

• Secure Boot is about ensuring a Chain of Trust established and
maintained throughout the runtime execution of code on the product.

• Secure Boot is used as a Root of Trust using cryptographic functions to
confirm the authenticity and integrity of the user firmware before
allowing it to run
– Unique Entry point at RESET (security infrastructure)
– Immutable code
– Authentication
– Integrity

reset

Authenticates

Code Cert.

User
Application

Boots Up

© 2017 Beningo Embedded Group, All Rights Reserved

Secure Firmware Update

Communication Communication
Device

Sensor

MCU

Server

Firmware

Data File

OEM Key

Developer

Data File
Firmware

MCUServer

§ Server sends FW Package

§ Device receives,
checks/stores/installs new FW
package and executes it

Communication

Data File

Firmware
Data File

Encrypted File

© 2017 Beningo Embedded Group, All Rights Reserved

X-CUBE-SBSFU in a Nutshell
• X-CUBE-SBSFU is provided as reference code to demonstrate state-of-the-art

usage of the STM32 security protection mechanisms. It is a starting point for
OEMs to develop their own Secure Boot and Secure Firmware Update
applications as a function of their product security requirement levels.
– The SBSFU application is an example illustrating how this can be achieved
• This is only one item of the package

– Security never comes for free
• SBSFU is NOT an off-the-shelf secure bootloader with secure firmware

update capability
• Customers to use it as an example to understand how to leverage the

STM32 assets
• Customers must analyze their system and build their own solution

under their own responsibility

© 2017 Beningo Embedded Group, All Rights Reserved

X-CUBE-SBSFU Features Overview
• Secure Boot (Root of Trust):

– Activate and Check right secure mechanisms of STM32 platform to protect critical operation and
secret from attacks

– Check Authentication and Integrity of User Application before execution
• New (Encrypted) Firmware download via USART Virtual com
• FW installation management:

– Detect new (Encrypted) Firmware version to install
– From local download service
– Pre-downloaded OTA via User Application from previous execution

– Manage Firmware version (check unauthorized updates or unauthorized installation)
– Secure Firmware Update:

– Firmware Authentication and Integrity check
– Firmware Decryption
– Firmware Installation

– In case of any error occurring during new image installation rollback to the previous valid
Firmware version

– Execute new installed Firmware (once Authenticated and Integrity checked)

© 2017 Beningo Embedded Group, All Rights Reserved

X-CUBE-SBSFU Features Overview

• 3 cryptographic schemes are provided

• The X-CUBE-SBSFU Architecture allows switching from one scheme to
another via compiler switch.

© 2017 Beningo Embedded Group, All Rights Reserved

STM32 Security Features

STM32
Series

Security Features
D

eb
ug

A
cc

es
s

P
or

t

R
E

S
E

T
R

eg
is

te
r

FL
A

S
H

W
R

P

FL
A

S
H

M
as

s
E

R
A

S
E

Ta
m

pe
r

P
in

s

C
R

C
H

ar
dw

ar
e

96
-B

it
U

ni
qu

e
ID

C
ry

pt
o

Li
br

ar
y

S
up

po
rt

M
em

or
y

P
ro

te
ct

io
n

U
ni

t(M
P

U
)

FL
A

S
H

R
D

P

TR
N

G

A
E

S
H

ar
dw

ar
e

A
cc

el
er

at
or

FL
A

S
H

P
C

R
O

P

H
A

S
H

H
ar

dw
ar

e
A

cc
el

er
at

or

Fi
re

w
al

l

S
R

A
M

R
D

P

FL
A

S
H

E
C

C

S
ys

 C
lo

ck
(M

H
z)

A
rm

C
or

te
x®

STM32 F1 72 M3

STM32 F3 72 M4

STM32 F0 48 M0

STM32 L1 32 M3

STM32 F2 120 M3

STM32 F4 180 M4

STM32 F7 216 M7

STM32 H7 400 M7

STM32 L0 32 M0+

STM32 L4 80 M4

© 2017 Beningo Embedded Group, All Rights Reserved

Package Architecture Overview

Hardware Abstraction Layer API

D
r
iv

e
r
s

CMSIS
Boards Support Packages

Development Boards

X-NUCLEO Expansion Board (CommIF)STM32 Nucleo Board

HW Components

STM32l4xx CommIF_HW_X CommIF_HW_YSTM32f4xx STM32l0xx STM32f0xx…

User Appli

Secure

Functions

Secure Engine

Crypto for

Bootloader

FW

Image

Helpers

Call Gate Entry point

Secure Engine Middleware

User Application

User Code

Example

Basic User Application

S
E

C
U

R
IT

Y

 A

C
T

IV
A

T
IO

N

Local FW loader

New FW detection

FW version

management

Error management /

Recovery procedures

Secure Bootloader & Secure Firmware Update

Secure FW Update

SBSFU Application

Secure Boot

FW

Download

(option)

Protections

Examples

Boot.Info

Secure Engine Interface

© 2017 Beningo Embedded Group, All Rights Reserved

X-CUBE-SBSFU Ecosystem Overview

Secure OEM-FW image Update (SBSFU local download or User Application Download)

User Flash

OEM FW V2

OEM Firmware Authentification/Encryption keys

SFU keys

W
R

P

R
D

P
L2

OEM FW V2

SBSFU

OEM FW V1

SBSFU

OEM FW V2
(Encrypted binary)

SFU FW Header Tera Term
Application

OEM FW V1

SFU keys

W
R

P

R
D

P
L2

OEM SBSFU FW

SBSFU Local dwl
UART I/F
Ymodem Protocol

OEM FW V2
(Clear binary)

Python
Preparation

Scripts

SFU Encrypt & Sign
Keys

Nonce (IV)

Secure Engine

Is
ol

at
io

n

Is
ol

at
io

n

OEM SBSFU FW

Secure Engine

OEM FW V2
development

IDE

User Application dwl
UART I/F
Ymodem Protocol

Could be replaced by an IOT server and OTA download in IOT device

Tera Term
Application

© 2017 Beningo Embedded Group, All Rights Reserved

Firmware Image Programming

Secure Engine

SBSFU

FW Header #A

Active
Firmware #A

Swap area

Slot #0

Slot #1

Secure Engine

SBSFU

FW Header #A

Active
Firmware #A

FW Header #B

Encrypted FW
Image #B

Swap area

Secure Engine

SBSFU

FW Header #B

Active
Firmware #B

FW Header #A

Backed-up FW
Image #A

Swap area

Dual Image Mode Of Operation Single Image Mode Of Operation

Secure Engine

SBSFU

Slot #0

FW Header

Active
Firmware

© 2017 Beningo Embedded Group, All Rights Reserved

Component Deployment Model
• UserApp: sample user application (mutable firmware: this is the updated FW)
• SECoreBin: the binary running in the secure enclave (isolated execution

environment)
• SBSFU: the Secure Bootloader with Secure Firmware Update capability
• Secure Engine, SECoreBin and SBSFU are tightly coupled

SBSFU

SBSFU Core

Secure Engine

se_interface

Low level APIs

se_interface_xxx.oCompiled in the SBSFU project

SECoreBin SE_Core.bin

Low level components

© 2017 Beningo Embedded Group, All Rights Reserved

Component Deployment Model

© 2017 Beningo Embedded Group, All Rights Reserved

Security Layering

© 2017 Beningo Embedded Group, All Rights Reserved

Types of Protections

© 2017 Beningo Embedded Group, All Rights Reserved

Chain of Trust

© 2017 Beningo Embedded Group, All Rights Reserved

Protected Processing

© 2017 Beningo Embedded Group, All Rights Reserved

Secure Enclave: Secrets Storage

© 2017 Beningo Embedded Group, All Rights Reserved

Non protected areas ….

• The FLASH slots storing the User Firmware Images are not protected

– Only the Header of the Active Slot is protected by Firewall

• The Active Firmware Image can be altered: SBSFU does NOT prevent this

– After altering the Active Firmware Image you can install any valid FW

version

– This is a way to re-install version N-1 despite the ‘anti-rollback’ check at

installation stage

• The slot #1 can be altered too

– Denial of Service is possible (no rollback possible)

• A lot more things can probably be done

SBSFU is an example (the security grade is unknown)
SBSFU is for free (available on st.com)…security is not…

© 2017 Beningo Embedded Group, All Rights Reserved

The NUCLEO-L476RG

© 2017 Beningo Embedded Group, All Rights Reserved

DEMO Project Setup

Bootloader
Demo

© 2017 Beningo Embedded Group, All Rights Reserved

Secure Bootloader Best Practices

• Start your secure bootloader design early!

• Remember that security isn’t free

• Select a microcontroller that supports security

• Lock the flash security bits to protect the bootloader and application

– Secure boot should be immutable

• Securely store private keys

• Clearly identify up-front the level of security that is necessary for the bootloader

• Develop a chain of trust

• Use signatures to authenticate the firmware source

© 2017 Beningo Embedded Group, All Rights Reserved

Going Further

• Download beningo.com resources
– C Doxygen templates
– RTOS Best Practice Guide
– Bootloader White Paper
– Bootloader Design Techniques Course

• STM Resources
– X-CUBE-SBSFU

© 2017 Beningo Embedded Group, All Rights Reserved

Questions

